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0. Introduction ':},

Consider a stationary p -th order autoregressive (AR(p)) process {X,, }:

X, = BiX, 1 +BX, 5+ - +B,X,_, +¢, I

where {e,} are independent, identically distributed (i.i.d.) random variables. The e
parameters B, ,..., Bp satisfy the usual stationarity constraints, namely all zeroes of the o
polynomial
- § B2~ g

i=t : e

have modulus less than 1. 3¢
Now assume that the true order p is unknown but bounded by some finite constant ks

K (N). Our main purpose here will be to estimate p by p where p will be obtained by
minimizing a particular version of Akaike’s Information Criterion (AIC) (Akaike, 1973) over ey
the integers {0,1,..., K(N)}. Because we should be willing to examine a greater range W'
of possible orders for our estimate as the number of observations increases, it makes sense to v
allow K (N) to increase with N . In the finite variance case with K (V)= K , AIC does not e
give a consistent estimate of p ; in fact, there exists a nondegenerate limit distribution of p
concentrated on the integers p, p+1,..., K (see Shibata, 1976). o
It should be noted that AIC is a very general procedure which applies to a variety of A
statistical models. In general, for a given statistical model €, with k-dimensional o

parameter vector b , AIC is defined as follows:
*Q,) = -2A(5)+2k )

where A(é) is the maximized log-likelihood for the model €, . However, in the time
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series literature, AIC is usually defined in terms of a Gaussian likelihood; so for a k-th order

autoregressive model, we will define AIC as follows:
Ok) = Nln (k) +2k

where 62 (k) is the estimate . "2 innovations variance obtained from the YW estimating
equations. We will choose as our -stimate of p the order which minimizes ¢(k) for &

between O and K, thatis,

p = i o).

In the case where two or more orders achieve the minimum, we will take the smallest of

those to be our estimate.

For certain reasons, we may also want the autoregressive parameters to vary (with N )
over some region of the parameter space. For example, consider the following hypothesis
testing problem:

Hy : X, = &
versus
H, : X, is anondegenerate autoregressive process.

We can consider a sequence of local alternatives {Ha(N ) } converging to H, in the sense
that all the AR parameters converge to zero and then investigate the power of AIC as a

statistical test.

The set of parameters which obey the stationarity condition is a complicated region in
RP (although the closure of this region is a compact setin R? ). However, it can be shown

(Barndorff-Nielsen and Schou, 1973) that there exists a one-to-one continuous mapping

TR | AT LY ; Y P A Ay 3 A A -, ~ A
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between the set of f’s and the set of the first p partial autocorrelations
{®@y.---Pp):pje (-1,]) for j=1,..., p}. Thus one can parametrize an AR(p)
process by its p partial autocorrelations, each of which may vary freely in the interval
(-1,1). Moreover, one can show that for an AR(p) process, p p = Bp . For autoregressive
order selection, the p-parametrization is somewhat more natural than the f-parametrization.
That is, the "distance” between two autoregressive models with different orders is more

casily seen in the p-parametrization.




L. Infinite variance autoregressions

We will be interested in the case where the innovations {e, } are in the domain of
attraction of a stable law with index a e (0,2). If E(|e, |) <ee then we will assume that
E(e,)=0.

Recall that given observations X, ,..., Xy and known order p, it is possible to

consistently estimate the AR parameters B,,...,B,. In fact for LS estimates

betahatsub1, ..., B, where I 2p:

NYS(B,()-B,) = 0 for B>a

where B, =0 for £ >p . For YW estimates, a slightly weaker result holds: convergence to
0 is in probability rather than almost sure.

We may also wish to consider AR models of the form
X, -0 =0(X,_ -+ +B,(X,_, —~W+e,
where W is unknown and we retain the same assumptions on the B, ’sand {e, }. Itcan be

shown (Knight, 1987) that if we center the observed series by subtracting the sample mean X.

(ie, X, =X, -X) and estimatc B,,..., B, via the YW equations (using X,

n=1,...,N), we will stll have NY3(f, -B,) > 0 for 5>max(l,a) and the
convergence is almost sure for LS estimates. More generally, we can center the observed
series by subtracting any location estimate | and estimate the B’s using the centered series.
Depending on the precise convergence properties of [I we may be able to obtain the full rate

of convergence for the estimates of the AR parameters (Knight, 1987).
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As stated earlier, we will want to vary the autoregressive parameters with N . For this

reason, we will consider a triangular array of random variables
x,®

xlm , xz(z)

g e ey

XIW) , XZ(N ) XN(N)

where each row is a finite realization of an AR(p ) process:
x® = ﬁls;wxﬁ;. e
"8

The corresponding triangular array of innovations, {e™’} .y, consists of row-wise
independent random variables sampled from a common distribution which is in the domain
of attraction of a stable law. Given a single i.i.d. sequence { e, }, we could construct each
element of the triangular array as follows:
x™ = i i (8™, _; .
j=0

We will require that E‘N)=(B{m,..., Bf,”)) are such that (p{ ..., p;")) are

contained in a closed (and hence compact) subset of (-1,1)* for all N. Since
B:N)-pg”,wecan attempt to shrink B;N) to zero as N goes to infinity and try to

congistently estimate p at the same time. (In the testing setup mentioned earlier, this would

correspond to AIC providing a consistent test under a sequence of local autoregressive
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alternatives.) Intuitively, it would seem that the smaller | B;” )| is, the more difficult it

should be to distinguish between a p-th order and a lower order AR model. From
simulations, this does seem to be the case. This is the real motivation for allowing the
parameters to vary with ¥ . Consider the following example. Suppose we observe a p-th
order AR process which has p, very close to zero (say p, = 0.1). To estimate the order

of the process, we use a procedure which we know to be consistent. So for N large enough,
we will select the true order with arbitrarily high probability. However, for moderate sized
N , the probability of underestimating p may be very high. Conversely, if |p, | is close
to 1, then even for small N there will be high probability of selecting the true order. So by
allowing p, = B’ to shrink to zero with N , we may get some idea of the relative sample
sizes needed to get the same probability of correct order selection for two different sets of
AR parameters. If we view order selection as a hypothesis testing problem (say testing a null
hypothesis of white noise versus autoregressive alternatives), shrinking 5,, to zero is
similar in spirit to the sequence of contiguous alternative hypotheses to a null hypothesis
considered in Pitman efficiency calculations.

We should note that the partial autocorrelations do not have their usual finite variance
interpretation; however, they can be unambiguously defined in terms of the regular
autocorrelations which themselves can be unambiguously defined in terms of the linear
process coefficients. (see Davis and Resnick, 1985) Moreover, the partial autocorrelations

can be estimated consistently by recursive YW estimates just as in the finite variance case.

If we include unknown location, ji, in the model, we will assume that it does not vary

with N. To have pu vary with N does not really make a lot of sense since it is, in a sense,
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a nuisance parameter in this situation.

We will provide an answer to the following question: under what conditions (if any) on Y
. K@) and (B ..., ™)) will AIC provide a consistent estimate p of p ? Bhansali '
(1983) conjectures that AIC may provide a consistent estimate of the order of an v

autoregressive process based on the rapid convergence of parameter estimates. However, he

seems to conclude, from Monte Carlo results, that this may not be the case. If K(N) is :
allowed to grow too fast then we may wind up severely overfitting much of the time; for i
example, p could equal X (N) with high probability. :

1
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2. Theoretical Results

The main result of this paper is contained in Theorem 7; the first six results provide the
necessary machinery for Theorem 7. We begin by stating two results dealing with r-th

moments of martingales and submartingales.

n
Theorem 1. (Esseen and von Bahr, 1965) Let S, = ¥ X, . If E(X, |S,_,)=0 for
k=1

2<n <N and X, € L” for 1Sr <2 then

r N r
0 E(sy 1) s2 £ E(X, ).

n=l

T w o 2B

(Note that {S, ,o(S,);n 21} is a martingale.) .

Theorem 2. (c.f. Chung,1974 p.346) If {X, ,0(X,);n 21} isan L -submartingale for

some r > 1 then

r r r r ‘
o E[l%p{”l ]S [r-l] E(xy ). i

The following lemma will allow us to ignore the dependence on N of the moments of
{xn(N) } by virtue of being able to bound the moments over any sequence of admissible

parameters within a compact set.

5o, ne_ e W

Lemma 3. Let {X, (P_)} be a stationary AR(p ) process with parameter E and innovations

{e, } in the domain of attraction of a stable law with index . Let C be a compact set of

the parameter space. Then forall 0<d<a,

s E[1,@1 <=

0 QI " P TA” AT W W ) o T, A Y R ¥
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Proof. X B) = I ¢ j B, j Where ¢; (B) is a continuous function of B for all j .
A= L g

Now

1X,®] s T le;®lle,_;|
Bl s 3 lo@

o0
s 2 aj len-jl
j=0

where a; = $up, le;(B)| . However, it can be shown that |a; | SCj”Iij where
Y P

|x| <1 and s0 3 Iaj|7<°° for all y>0. Under this summability condition, it
j=0

' follows from Cline (1983) that the random variabie

oo
j=0

-

~

N is finite almost surely with
§ oo
! . P(X>x] a
' lim = a, < oo,
‘l X~ o0 P[ 'ell >I] 1§0 s
)
This implies that E (X %) is finite for all 0 <8 < and the result follows. )

The following lemma will allow us to treat moments of ¥ X, the same as the

R T

momentsof Y€, when a>1.

d Lemmad. Let {X, } be azero mean stationary AR(p) process with innovations {e, } in

R the domain of attraction of a stable law with index a> 1. Thenforany 1<r <a,

. e e e

‘f‘v".‘."‘.".‘.‘?‘ﬂ‘ l't‘l'!‘(‘:’l't"\ \')A'\l".‘o"..l'.‘nh N :‘.l:\l. ':‘\'.‘I. 3 l'c B . "’ - """'v' " 'r '. " f :
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@ E||Tx,| |=0m .
n=] T

L X
. T

= OWN). .

®) E LIE‘,‘;‘;‘N Z X oW A
Proof. ' 3
N N p 3

28 = 2 xn - Z kan—k by

n=1 n=1 k=1 iy

',

-

p N
{I—EIB" ] 2 X, +Ry

- L)
n=] ':‘.
{
\J
h Ry| s +1 X . Th
where I NI [ltsnkasxplﬁkl ]P‘P )[l—:nsakst' tl ] us :
N N i
XX, =C|Xe, -Ry )
n=1 n=1 ']
-1
where C = [l - f B ] . Thus by Minkowski’s Inequality, v}
k=1 . -
1r 1/r ‘ X
ol ' Y ’ Y "
E|| T x, SCE||X¢e, +CE[|Ry] 1

a=l n=l :&
)
and part (a) follows from Theorem 1 by noting that E [ IRN | ’ ] = OWN). (It can actually 3
[{
be shown to be o(N) by using a uniform integrability argument.) <

Part (b) follows similarly from Theorem 2 by noting that

3 e,

n={

m
X |scC
Z X me

n=1

max

+ CR
1Sm<N N
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and using Minkowski’s Inequality. a
The following theorem deals with uniform convergence of both LS and YW

b autoregressive parameter estimates in the case where location is known.
: Theorem 5. Assume known location u. Let K(N)=0O®W®) for §< Z‘T“ and let ||v||

denote the Euclidean norm of the vector v . Then

P
! () W max 1B0)-B7N = 0 where B{" =0 for k >p.

N 4
; W n-fd .
o (b) cmax -l - o0
. Note that the vectors are not fixed length but may vary with N .
3,
Proof. (a) The style of proof will mimic Hannan and Kanter (1977). For convenience we
; suppress the notation indicating the dependence of {X,}, {e,} and B on M. For I 2p
f the LS estimating equations can be reexpressed as follows:
?  J
. ¢ (B-B) =1
\
:: * y o 2-a 8
. where r; ()= ¥ e,X,_ ;. Fix 8< 5 and set K =K(N)=O(N"). For each
\ n=l+1
, i, C, is non-negative definite and so it suffices to show that for some x < —(2;-,
]
"‘ ® maxN® il 50
- i r
4 psisk =1
. P
¢ (ii) min min N""v'C, v = oo
p psisK|viFl

P
where K =K (N). If (i) and (ii) hold then clearly VN max HBH-Bil — 0.
psisk = T

R .- -

% Az I AR R I AR S S gt aty e
B R A A e S L G, SO T T o o i £ 2
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To prove (i), it suffices to show that L

N 2 )
2 enxu-j

naxl+l

E, = E| max N""‘

-0

for some Y< —. o

Now

N2 B max

Mx

Ey = |

S,
]
[

K
S 3 NO-29E | max
j=1 lSlS‘

2y ()

< f;N“"“’Y E

i=m1 lSl“ z enxn ~J
Jj=

12 12 v
N n A
E| | YeX,_;

n=l

K
+ TN I2E] max
j=1 1€1sK

2 8,‘ n-j

n=l

K (
= zlzv“-wv [VN.,. +Wy ; +2V2 Wi ] e
l’

ARG

¥

If 2y <1 then by the so-called c,-inequality

= O(K(N)) ‘.

VN.j [Z IE" u—; 21

n=]

1 LY, S LA AT AR - a " At At e
"\\'QN";" "\‘." 'l.'l"lq. .n. .'l.'o. .'..'.o‘.s.n.'lo O MOLE AP WY NS WAL AN WY,
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uniformly over j between 1 and K(N).
k

If 2y21 then @>1 andso §; ; = z‘e,,x,,_j is a martingale for each j. Hence
n=

| 5, j| is an L 2Y-submartingale and so by Theorems 1 and 2,

%

l

2y K
SCE(|Sx;l " 1s2C T Elle,X

naul

Vn.i nejl 1= 0K&WNY

uniformly over ;.
Similarly it can be shown that for all permissible values of y, Wy j = ON) uniformly
over j between 1 and K(N). Thus for a given sequence K (N)=0 (V%) by taking «x

sufficiently close to —:‘- and v sufficiently close to =, we will have

2
Y
E N? 2"2‘; i X 2
max - [ _: =o0(1)
psisk jot|amisn T
as desired.
To prove (ii), we define X, &, asfollows:
K
Xn.v = Z vkxn-k
k=1
K
eu.v = 2 vken—k
k=1

K
with ¥ v,‘2 = 1. It suffices to show
k=1

: -« ¥ 2 P
min {N Y X, [ @

v i=1 n=K+1

VoS A SR LA N
y T WA e
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2
Now note that X, , = ¥ B

X, —jvtea . By the triangle inequality,
N 12
- 2
{N x p Xn,v} >

J

N }: z ﬁkxn—k,v -iN 2 en-k,v
n=K+1 k=1 n=K+1

j=1
n=K+1

Now

2
N~* % [i thn—k.v ] s 'f:l ﬁjz i N~" % nz-k.v

n=K+1 { k=1 Jj= k=1 n=K+1

_ 2 8 -« X 2
) j=1ﬁj k§1N “%HX,,., oM

P
It remains only to show that N~ T e2 | — co. If this is true then

P
N~F 3 X,,z', — oo since the probability that this quantity stays bounded clearly must tend

to zero.

N“‘NZ-N"‘N K 22 +2
2 &, = 2 {1 X e, 2 VieBa_ i€y

n=K+1 n=K+1l (k=1 15 j<ksK
Now
N K K N
2.2 - 2.2
2 Z"t en—k = Z Z vk en—k
n=K+1 k=1 k=1 n=K+l
K 2 N-X
2 E Vi 2 en
k=1 n=K+1
N-K
2
= X &,
n=K+1

AR AR " _'-‘v» -.‘g ol Nl r" - !yﬂ “l " Y 0%

LR y?

Cha e i 4
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Thus we need only show that

N P
-
N Y XX ViVi€, €,y = 0.
n=K+1 1<) <k<K
Now
| &t N < K k-1 N
NTHEv IV Z & € | SN T Ivi L ivil| X g, 8,
k=2  j=1 ~ a=K+l k=2 j=1 n=K+1

Nowtake Yy < andnote that j #»k. If y <1 then

N i N
E T oe,_jey SE| T le,_je, 1T |=0m).
n=K+] n=K+}
!
If Y21 then necessarily a>1. Thus §;= ¥ €,_;e,_; isan LY-martingale and
n=K+]1

hence

Y

N
Z en-jen-k = O(N)

n=K+1

E

uniformly over j #k by Theorem 1.

- e A - TR . - I PP I G A B AP R R TR LTI I AT L AR TR T Y oY N E N
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Now
Y
- k-1 N -y y
E [N S IS y1 | T eujeass|]| | = 00RO = 0
k=2 j=1 a=K+1

since Jv, | <1 forall k.

(b) From the definitions of €, ,C, ,#, and 7, , itis easy to see that

N

1 Ty = CG,nH-Ca,Hl s Txt+ x?2
(13) N = ik 15..;51' G.-C6.nl ..{'1 naNz-Kﬂ g
and

1 = f - F, Xz B

(1b) Sn 1Si5K 11 sl' OMA0] S,E'x

Thus using equations (1a) and (1b), we have

(2a) N*T, = o, W~NhH
and
(2b) - NSy =0,(N" ")

for x < -; Now using some elementary facts about vector and matrix norms and equations

(2a) and (2b), we get

(3a) max N~ 1€, =C,ll = 0, KVIN™!) = 0, (1)
and

(3b) max N~* (|7, = £l = o, (KW)2N™Y) = 0, 11N

where the matrix norm is that which corresponds to the Euclidean vector norm.

W A AT AT T 4 o .
o nlahhnn 0 r

TS




2

I‘
17- ;
Now from the definitions of _B_(l ) and E(l ), we get
&
N%E (B - BAY) = 0, (/W) i
l"“
uniformly in / by equation (3b). Finally we must show that the minimum eigenvalue of
N™* €, tends in probability to infinity uniformly in ! since (N~ C, )™} is (in the 3
“
case of symmetric positive definite matrices) merely the reciprocal of this minimum E'
cigenvalue. Note that for unit vectors v o v
o
A
N v'Cyv=N"yCry+N"v(C-Cy g
"
. 3
2N *v'C v -N"‘Il(f,-(f," — oo ]
uniformly over / and unit vectors v by condition (ii) of the proof of part (a) of this “:
73
theorem and equation (3a) above. Therefore >
’ :
WNT=C >0 N
X
as required. ]
’
In the case where we have an unknown location parameter and we estimate it with some {'
location estimate |1, we can obtain the following corollary. §'._
Corollary 6. ]
e."!
i-p)? = Y i 2_35,0 ; ]
. If (u=-p) -OP(N) for ySmm[[a T+3 ],0] uniformly over all ::"!‘
compact subsets of the parameter space, then Theorem 5 still holds. For a>1, X R
§
satisfies this condition. ?:3:
o
2. If asl and ﬁ.lf and K(N)=0(N8) for 8 < —;—, then conclusions (a) and (b) of
g
Theorem § hold. ]

-

A‘Q‘.'!‘.'\‘.'ﬂ ;h. 0 On.in.! ) Q'l . “ \.“ .'0 Fhe 1 " ‘\'V’f ' u Q » ‘ .v.l [} Q”'J‘ ", ..‘ "
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Proof. 1. (2) Assume without loss of generality that 4 =0. We can again reexpress the LS

estimating equations as follows:
C@-p=r;
where now

N -~ A
cl(i lj) = z (x.—i -u)(x.-j"u)
j=i+l

- N - P -
ng= 3 [3.‘*}1{1‘25311()‘,-;‘“)

n=xl+l k=1l

k=]

=r; () + (N-l)[l-i‘, By ]si’ :

By similar methods to those used in the proof of Theorem 5, it is easy to show that for some
k<X,
a

- s P
max N~ |z, || = 0.
psisk

(The term involving zx,,j is killed using Lemma 4.)

In addition, using the conditions on ﬁ,
- P
N *KNWi? > 0.
Finally, it follows easily that

- p
min min N"*v'C;v = oo.
pSisK fviml

. " A A , . L - . e g
Al MO IO O DR ONO0O OO O D ¥ ML Y WAL, S R R L A 8

ow - -~
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(b) Defining Ty, and Sy analogously to the proof of Theorem 5, we again get that for Z':
- ‘!
some X < —2— N ':
« v
&
-X “l ':»
NT, = 0, N 2
and 3
v
'
NSy = o,(N" ") 3
and the rest of the proof follows as in the proof of Theorem §. :.:
]
&
2. Everything follows from the fact that forany 0 <8 <, :‘:
N 8 b
Elmx| ¥ X = O(N)
1SISK| \ 27 &
"
-
\
max ﬁ x. | =0, WV 3
1sisk| 5, 0" P ' .
.
So by taking d closeto & and x close to -:T,weget R
2 3
- 1 N 4 :
NB kW)~ | max X >0
¢ )N 1sIsK ,,,z,:ﬂ "
and conclusions (a) and (b) follow directly from this. O ke
2
Theorem 7. If liminf N |B%?|” > 2p and conclusions (a) and (b) of Theorem 5 hold ,
N—oos v
for some K(N) then “_ET

>
l'u
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¥

. o
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. . . . P
Proof. First we note that since p is integer-valued, p — p is equivalent to

P[p =p) 1 (as N — o). From here on, we will refer to K(N) as K and to B as

B, thus suppressing the dependence on N .

Moreover we will assume that the observations X, are already centered; that is, we have

subtracted out the location estimate 13. (if we are assuming unknown location).

We now use the fact that

k
Fk) = SO~ P2)  for k21
i=1

" N
where &%(0) = — ¥ X2 and P,(l) is the YW estimate of B, (1Sk <!) in an
N n k k

AR(/) model. Now P[p <p]$P[oxstiin dk)SHp)].
<p

Since
min 6(k) 2 N:‘i_',:ln(l - B2y + N n&*0),
we can write
P(p <p] s Plin(1- B} () 2-2p/N]
= P[(1- B, @) 2 exp(-2p/N) ]
s PINB s ] .
However,

N B2p) = (W |B, | +a, (1))
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limsup P[N B; (p) < 2] = 0

since liminf VW (B[ >¥2p . Thus P[p <p] — 0.

We also have that
P(p>pIsP[ &) <dk-1) for some p <k SK ]
P[ i - BZk) <~ ]
< Nptgl;lxln(l Bi k) <~2
If the conclusions of Theorem § hold, it follows that

14
N 2k 0
2 ) o

. 2 4
pr:::xs:‘ln(l Bik) = 0.

Therefore, P[p >p) 0.

P
Thus P(p »p] -0 andso P(Pp =pl—1 whichimpliesthat p — p.
The "practical” implication of this theorem is that if N is large, with high probability
p will equal p provided that |B, | is not too small with respect to N. Or in other

words, for fixed (but large) N, the probability of selecting the correct order decreases as

|B, | decreases. Finite sample Monte Carlo results scem to bear this out.
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o
3. Simulation results A
-

For illustrative purposes, a small simulation study was carried out using four symmetric H

LY

stable innovations distributions with «=0.5,1.2, 1.9 and 2.0 (the latter being the normai
distribution). The underlying processes were AR(1) processes with the AR parameter

B=0.1,0.5and 0.9. The sample sizes considered were 100 and 900. For N =100, the R
maximum order K was taken to be 10 while for N =900, K was taken to be 15. 100 :
replications were made for each of the 24 possible arrangements of o, B and N . The results ‘
of the study are given in Tables 1 through 8.
Estimated AR parameter p
order 01 ] 05 09 o

0 89 0 1 ;

1 4 | 91 | 87 b

2 4 3 2 2
3 0 1 1 W,

4 1 0 0 N

5 0 3 2 "
7 0 0 3 s
8 0 0 1 _:
9 1 1 0 ]

10 0 0 1 .

pt

Table 1: Frequency of selected order for AR(1)
process. N =100 a=05 by
W

v , - " [P PP - .
BCOGOOUINS '.'.4'~n".'-‘!lta‘:'?"d'l"n‘. Wf. uf,'ol"q" 103'.‘!%6.0.;.. LN l'.ﬂ.t'. fi T Wi W S WA e S P P o L, 8t e e In" oM~
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Estimated AR parameter :

§'
o
et
o
(7]
(=]
O

0
w o
4 <
“n o
O

-

VoA AE WD =O
NO=hOOOOO
COWUMODOOOOC O
M= NOOOO—O

s

10-15

of & T, 5%

Table 2: Frequency of selected order for AR(1)
process. N =900 a=0.5

[
[)
v
The results are much as expected. We can see that for N =100 and B, =0.1, AIC o
underestimates the true order with high probability. For N =900, the probabilities of a
selecting the true order increases over those for N = 100. :'
Estimated AR parameter "
order 0.1 0.5 0.9 X
0 70 0 0 3
1 15 | 86 | 86 )
2 7 7 4 Iy
3 3 3 3 \
4 1 1 3 3
5 0 1 1 N
6 0 0 0 N
7 2 0 2 Ry
8 2 1 1 i
9 0 1 0 -
10 0 0 0 -
Table 3: Frequency of selected order for AR(1) o
process. N =100 a=1.2 i
'
f

k) §,% ) 1 () (7 - N “w E - ¥ »\ o N . A N
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b
A
Estimated AR parameter
order 01 [ 05 ] 09 ;
0 0 0 0 '
1 80 87 90 ;
2 6 3 3 ~
3 6 0 1 N
4 1 4 3 )
5 1 2 0
6 0 0 0 ‘
7 2 2 1
8 1 0 0 N
9 0 0 0 N
10-15 3 2 2 n
.
Table 4: Frequency of selected order for AR(1) !
process. N =900 a=1.2
L
Estimated AR parameter -
order 0.1 0.5 0.9 ;
0 57 0 0
1 25 76 7 hi
2 5 8 10 5
3 2 5 9 A
4 3 6 6
5 2 1 2 ;
6 3 1 0 :
7 1 1 1 .
8 1 0 0 V
9 0 0 1 ’
10 1 2 0 v
1
Table 5: Frequency of selected order for AR(1) '
process. N =100 a=1.9 &
N
;
o
(9
N
N
;

h IR
a
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Estimated AR parameter -
0.5

§'
(=
Pt
e
v-1

=R
o

74
14

VR JANDWN=O
0O O Wrm == NN
NO O e = AN

~
—— O WONNNVWMWO

10-15

Table 6: Frequency of selected order for AR(1) “
process. N =900 a=1.9

Estimated AR parameter A
05 | 09

0 o
75 .

alo

—-o.-.—nno.-aau...

50«~xa«uaun-—o§.

~
O = O HLNYNAWWMO

—
COmmOWNMNWVMNDN

Table 7: Frequency of selected order for AR(1) ¢
process. N =100 Normal distribution o

1
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Table 8: Frequency of selected order for AR(1)
process. N =900 Normal distribution
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Estimated AR parameter
order 0.1 0.5 0.9
0 0 0 0
1 83 79 80
2 3 3 11
3 4 4 3
4 4 6 0
5 2 3 3
6 0 0 0
7 0 4 0
8 4 1 1
9 0 0 2
10-15 0 0 0

-
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4. Comments

Bhansali and Downham (1977) propose a generalization of AIC. They propose to

O

minimize ¢'(k)=N In &2 (k)+vk where ye (0,4). It is easy to see from the proof of the
. above result that their criterion will also lead to consistent estimates of p under similar
conditions on K(N) and B;N ). In fact, if Yy=Y(N) >0 satisfies Y(N)/N — 0, then the

criterion corresponding to ¢”(k)=N In & (k)+yYWN)k will consistently estimate p .

! Specifically, with known location, the estimate will be consistent provided

'. .. N N) 2

1 1im inf ——

N N =0 YV) ‘ Bp l >p

1' with y(NV) bounded away from zero and with the same conditions on K(N). With an
0

appropriate choice of y(N), this criterion will also be consistent in the finite variance case.

! However if y(N) grows too quickly with N then the criterion may seriously underestimate

the true order p in small samples in both the finite and infinite variance cases. In an

L]

g application such as autoregressive spectral density estimation (assuming now finite

P variance), underestimation is more serious than overestimation since, if the order is

D)

)

X underestimated, the resulting spectral density estimate may be lacking important features
which may indeed exist.
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